Abstract
In this paper, an ultra-low voltage microelectromechanical system (MEMS) switch is proposed, modeled and demonstrated. Through the introduction of torsional hinges, stiction-recovery actuation was possible, and thus irreversible stiction could be overcome. Owing to this see-saw-like actuation, the switch could be freely designed to have low stiffness resulting in an ultra-low actuation voltage. The proposed switch shows an actuation voltage of around 3 V, which is especially low compared with typical values of several tens of volts in conventional microelectromechanical switches. Variation of the actuation voltage stayed under 12% during 106 cycles. Switching performance was degraded by an increase of contact resistance rather than in-use stiction. Using the proposed switches, low-voltage mechanical logic gates were also proposed and successfully demonstrated, operating at VDD of 3 V.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have