Abstract

We report measurements of AlF3 thin film growth on Cu(1 1 1) at room temperature by means of scanning tunneling microscopy. The growth proceeds by the formation of fractal islands characterized by a very corrugated surface. Through uncovered zones and island density we determined a diffusion length of ~25 nm for the adsorbed molecules. Even with this large diffusion length the step-edges do not appear fully decorated. These experimental results are contrasted with simulations based on a limited diffusion aggregation model and Metropolis Monte Carlo.Additionally, the results of the AlF3 sub-monolayer growth on Cu(1 1 1) are compared with our previous results on Cu(1 0 0), finding that both systems show more differences than similarities. Thus, while the growth on Cu(1 0 0) shows fully decorated step-edges, on Cu(1 1 1), they present non-covered zones even at coverages as high as 0.7 monolayers. Supported on MC simulations we suggest that the qualitative difference between both faces is due to different step-edge behaviour.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.