Abstract

In this paper, a low-density parity-check (LDPC) coded recording system is investigated, for which the run-length-limited (RLL) constraint is satisfied by deliberate flipping at the write side and by estimating the flipped bits at the read side. Two approaches are proposed for enhancing the error performance of such a system. The first approach is to alleviate the negative effect of incorrect estimation of the flipped bits by adjusting the soft information. The second approach is to increase the likelihood of the correct detection of flipped bits by designing a flipped-bit detection algorithm that utilizes both the RLL constraint and the parity-check constraint of the LDPC code. These two approaches can be combined to obtain significant improvement in performance over previously proposed methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call