Abstract

The oxidation of CH4 and CH4/C2H6 mixtures were studied at pressures relevant to knocking in large bore natural gas engines. The experiments were carried out in a rapid compression machine (RCM) at end of compression (EOC) temperatures ranging between 885 and 940K at compressed gas pressures of 105, 125, 150, and 160bar at varying equivalence ratios (0.417, 0.526, and 1.0) and dilution percentages (0, 10, and 30% Exhaust Gas Recirculation – EGR) that were defined in a test matrix. This study describes the method and limitations of performing high-pressure experiments of this magnitude in an RCM, modeling, and validation of the kinetic mechanism against experimental data. While the recently published AramcoMech 2.0 could well predict the ignition delay times (IDTs) for CH4 within the uncertainty ranges at comparatively higher pressures and lower temperatures (885–940K), the predicted reactivity is, in general, lower than that of AramcoMech 1.3 as shown in our previous screening study. Based on the comparison between both mechanisms as well as sensitivity analysis on the predicted IDTs, the reaction rate constant for Ḣ-atom abstraction from CH4 by HȮ2 radical was optimized in order to achieve better agreement with the new data while maintaining the agreement to the previous data sets. The modified mechanism predicts well the IDTs and the trend of their variation caused by the change in pressure, equivalence ratio, dilution percentage, and mixture variation with C2H6.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.