Abstract

Anthocyanins are secondary metabolites that are involved in providing flower petal pigmentation. In plants, anthocyanin synthesis is regulated positively by a conserved MYB-bHLH-WD40 (MBW) complex and negatively by repressors. We isolated a repressor of anthocyanin synthesis, MYBx1, from a moth orchid Phalaenopsis cv. Big Chili. MYBx1 encodes a typical R3-MYB protein and exhibited diverse expression patterns in four Phalaenopsis cultivars, Big Chili, Fuller’s Sunset, Sogo Yukidian “V3”, and Sogo Lit-Sunny. A yeast two-hybrid assay analysis indicated that MYBx1 can also participate in the MBW complex by interacting with the transcription factors ANTHOCYANIN (AN) 1 and AN11. Over-expressing MYBx1 in the petunia hybrid M1 × R27 resulted in reduced accumulations of flower petal pigments through the repression of anthocyanin activities. A quantitative real-time PCR analysis of the expression patterns of anthocyanin synthesis-related structural genes in the transgenic petunia flower petals showed that the expression levels of chalcone synthase, flavanone 3-hydroxylase, and dihydroflavonol reductase genes were considerably down-regulated. However, no significant changes in the expression levels of the MBW complex members, AN1, AN2, and AN11, were observed. This study improves our understanding of anthocyanin synthesis-related regulatory networks in plants and also provides an important foundation for the further genetic engineering of ornamental plant flower colors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call