Abstract

S-doped nickel molybdate nanorods grown on nickel foam (S-NiMoO4/NF) were fabricated by a two-step hydrothermal method. The resultant S-NiMoO4/NF exhibited remarkable bifunctional electrocatalytic activity, with overpotentials of 235 mV for the hydrogen evolution reaction and 150 mV for the oxygen evolution reaction at a current density of 50 mA cm-2. Assembled into the two-electrode S-NiMoO4/NF electrolyzer in alkaline electrolytes for overall water splitting, it required only low cell voltages of 1.55 V and 1.63 V to drive 50 mA cm-2 and 100 mA cm-2, respectively. No significant performance degradation occurred during the water electrolysis process. The experimental results confirmed that S-doping induced the increase of the oxygen vacancies, accelerating the reaction kinetics and thus improving the electrocatalytic performance. Meanwhile, more active sites exposure on the surface of S-NiMoO4/NF enhanced the reactivity. This work may guide the development of efficient bifunctional catalysts in alkaline electrolysis through oxygen vacancy regulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call