Abstract

Non-destructive in-depth analysis of the surface films formed on the sputter-deposited binary W-xCr (x = 25, 57, 91 at %) alloys in 12 M HCl solution open to air at 30 °C was investigated using an angle-resolved X-ray photoelectron spectroscopic (AR-XPS) technique to understand the synergistic corrosion resistance effects of showing very low corrosion rates, even lower than both alloying metals of the deposits. The average corrosion rates of these three tungsten-based sputter deposits found to be more than five orders of magnitude (between 3.1 × 10−3 and 7.2 × 10−3 mm/y) to that of chromium and also nearly one order of magnitude lower than that of tungsten metals. Such high corrosion resistance of the sputter-deposited W-xCr alloys is due to the formation of homogeneous passive double oxyhydroxide film consisting of Wox and Cr4+ cations without any concentration gradient in-depth after immersion in 12 M HCl solution open to air at 30 °C from the study of the non-destructive depth profiling technique of AR-XPS. Consequently, both alloying elements of tungsten and niobium are acted synergistically in enhancing high corrosion resistance properties of the alloys in such aggressive electrolyte.
 BIBECHANA 18 (2021) 201-213

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.