Abstract

With large acceptance and excellent particle identification, STAR is one of the best mid-rapidity collider experiments for studying high-energy nuclear collisions. The STAR experiment provides full information on initial conditions, properties of the hot and dense medium as well as the properties at freeze-out. In Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV, STAR's focus is on the nature of the sQGP produced at RHIC. In order to explore the properties of the QCD phase diagram, since 2010, the experiment has collected sizable data sets of Au+Au collisions at the lower collision energy region where the net-baryon density is large. At the 2014 Quark Matter Conference, the STAR experiment made 16 presentations that cover physics topics including {\it collective dynamics}, {\it electromagnetic probes}, {\it heavy flavor}, {\it initial state physics}, {\it jets}, {\it QCD phase diagram}, {\it thermodynamics and hadron chemistry}, and {\it future experimental facilities, upgrades, and instrumentation} [1-16]. In this overview we will highlight a few results from the STAR experiment, especially those from the recent measurements of the RHIC beam energy scan program. At the end, instead of a summary, we will discuss STAR's near future physics programs at RHIC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.