Abstract
The motor imagery brain-computer interface (MI-BCI) provides an interactive control channel for spinal cord injury patients. However, the limitations of feature extraction algorithms may lead to low accuracy and instability in decoding electroencephalogram (EEG) signals. In this study, we examined the classification performance of an MI-BCI system by focusing on the distinction of the left and right foot kinaesthetic motor imagery tasks in five subjects. Feature extraction was performed using the common space pattern (CSP) and the Tikhonov regularisation CSP (TRCSP) spatial filters. TRCSP overcomes the CSP problems of noise sensitivity and overfitting. Moreover, support vector machine (SVM) and linear discriminant analysis (LDA) were used for classification and recognition. We constructed four combined classification methods (TRCSP-SVM, TRCSP-LDA, CSP-SVM, and CSP-LDA) and evaluated them by comparing their accuracies, kappa coefficients, and receiver operating characteristic (ROC) curves. The results showed that the TRCSP-SVM method performed significantly better than others (average accuracy 97%, average kappa coefficient 0.91, and average area under ROC curve (AUC) 0.98). Using TRCSP instead of standard CSP improved accuracy by up to 10%. This study provides insights into the classification of EEG signals. The results of this study can aid lower limb MI-BCI systems in rehabilitation training.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Medical & Biological Engineering & Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.