Abstract

In the recent context of Brain-computer interface (BCI), it has been widely known that transferring the knowledge of existing subjects to a new subject can effectively alleviate the extra training burden of BCI users. In this paper, we introduce an end-to-end deep learning framework to realize the training free motor imagery (MI) BCI systems. Specifically, we employ the common space pattern (CSP) extracted from electroencephalography (EEG) as the handcrafted feature. Instead of log-energy, we use the multi-channel series in CSP space to retain the temporal information. Then we propose a separated channel convolutional network, here termed SCCN, to encode the multi-channel data. Finally, the encoded features are concatenated and fed into a recognition network to perform the final MI task recognition. We compared the results of the deep model with classical machine learning algorithms, such as k-nearest neighbors (KNN), logistics regression (LR), linear discriminant analysis (LDA), and support vector machine (SVM). Moreover, the quantitative analysis was evaluated on our dataset and the BCI competition IV-2b dataset. The results have shown that our proposed model can improve the accuracy of EEG based MI classification (2–13% improvement for our dataset and 2–15% improvement for BCI competition IV-2b dataset) in comparison with traditional methods under the training free condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.