Abstract

ABSTRACT The corrosion of reinforcement possesses a huge problem for our present infrastructure both in terms of human lives and monetary ground. Understanding the corrosion of thermomechanically treated (TMT) rebar in concrete structures is essential as it represents a large segment of reinforcement materials. In this review, we have tried to scrutinize this issue from different directions. The established corrosion model for rebar, especially for TMT rebar, has been examined. The main contributing factor for rebar corrosion is how passivation occurs and its disintegration in contact with aggressive ions. The effects of composition, microstructure, concrete-rebar interface, concrete type, and corrosion media on this phenomenon have been analyzed. We have realized that the exact time of chloride ion attack determines the effectiveness of the passive layer in inhabiting the corrosion initiation. A combination of suitable alloying and controlled thermomechanical treatment ensures corrosion resistant rebar. Concrete also plays an important role in corrosion prevention as it helps passivation step and stops aggressive ions from reaching the rebars. Finally, we have discussed some recent trends in corrosion management technologies and their effectiveness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call