Abstract
Bond strength deterioration in corrosion-damaged reinforced concrete structures significantly affects serviceability and load-carrying capacity in their remaining service life. This paper presents a new analytical model for predicting the cracking development in the surrounding concrete and the residual bond strength of rebar in concrete structures due to reinforcement corrosion. The proposed analytical method adopts the thick-walled cylinder model for the cover concrete and considers the realistic properties of the corrosion-induced cracked concrete such as anisotropic behavior, residual tensile strength, and reduced tensile stiffness. As corrosion progresses, three phases for bond strength evolution associated with concrete cracking development are defined and the corresponding corrosion levels in each phase are determined. By using the constructed new governing equation, the crack width growth in the concrete cover and the radial bursting pressure at the bond interface are evaluated. The ultimate bond strength is then estimated from the contributions of adhesion, confinement, and corrosion pressure as a function of corrosion level. Finally, the effectiveness of the proposed analytical model is demonstrated by comparing the predicted results with experimental data available, and the results show that the proposed model is useful for predicting the bond strength evolution of the corroded rebar in concrete structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.