Abstract

With the development of Internet technology and the popularity of digital devices, Content-Based Image Retrieval (CBIR) has been quickly developed and applied in various fields related to computer vision and artificial intelligence. Currently, it is possible to retrieve related images effectively and efficiently from a large-scale database with an input image. In the past ten years, great efforts have been made for new theories and models of CBIR, and many effective CBIR algorithms have been established. Content-based image retrieval helps to discover identical images in a big dataset that match a query image. The query image's representative feature similarities to the dataset images typically assist in ranking the images for retrieval. There are various past studies on different handicraft feature descriptors according to the visual features that describe the images: color, texture, and shape. However, deep learning has been the dominant alternative to manually planned feature engineering; it automatically takes the features from the data. The current work reviews recent advancements in content-based image retrieval. For a deeper understanding of the advancement, the explanation of current state-of-the-art approaches from various vantage points is also conducted. This review employs a taxonomy encompassing various retrieval networks, classification types, and descriptors and this study will help researchers make more progress in image retrieval

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.