Abstract

Aqueous rechargeable zinc ion batteries (ZIBs) have been revived and are considered a promising candidate for scalable electrochemical energy storage systems due to their intrinsic safety, low cost, large abundance, mature recyclability, competitive electrochemical performance, and sustainability. However, the deployment of aqueous rechargeable ZIBs is still hampered by the poor electrochemical stability and reversibility of Zn anodes, which is a common, inherent issue for most metal-based anodes. This review presents a comprehensive and timely overview of the challenges and strategies of Zn anodes toward durable ZIBs. First, several challenges that significantly reduce the Coulombic efficiency and cycling stability of Zn anodes are briefly discussed including dendrite formation, hydrogen evolution, and corrosion. Then, the mitigation strategies are summarized in terms of modifying the electrode/electrolyte interfaces, designing electrode structures, and optimizing electrolytes and separators. Further, we comprehensively discuss the mechanisms behind these issues and improvement strategies with respect to the anodes, electrolytes, and separators. Lastly, we provide perspectives and critical analyses of remaining challenges, outlook, and future direction for accelerating the practical application of aqueous rechargeable ZIBs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call