Abstract

The cornea is an important barrier to consider when developing ophthalmic formulations, but proper modeling of this multilayered tissue remains a challenge. This is due to the varying properties associated with each layer in addition to the dynamics of the tear film. Hence, the most representative models to date rely on animals. Animal models, however, differ from humans in several aspects and are subject to ethical limitations. Consequently, in vitro approaches are being developed to address these issues. This review focuses on the barrier properties of the cornea and evaluates the most advanced three-dimensional cultures of human corneal equivalents in literature. Their application potential is subsequently assessed and discussed in the context of preclinical testing along with our perspective toward the future. Impact statement Most ocular drugs are applied topically, with the transcorneal pathway as the main administration route. Animal corneas are currently the only advanced models available, contributing to the drug attrition rate. Anatomical and physiological interspecies differences might account for a poor translatability of preclinical results to clinical trials, urging researchers to devise better corneal equivalents. This review elaborates on the emerging generation of three-dimensional in vitro models, which comprises spheroids, organoids, and organs-on-chips, which can serve as a stepping stone for advancements in this field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call