Abstract

We report an overturning-like structure of the thermospheric sodium layer (TSL) in the altitude region of ∼100–120km observed by a sodium lidar at Haikou (20.0°N), China, on July 29, 2012. The overturning-like sodium layer was first seen as upwelling from the top of the sodium layer (∼102km) to an altitude of ∼118km from 14:55 to 15:50 UT and then descending gradually from its apex with a speed of 3.5km/h. The ionospheric observations from the COSMIC radio occultation and three ionosondes exhibited abrupt perturbations in the radio occultation (RO) SNR profiles and spread Es in the ionograms, respectively, indicating the existence of complex Es around Haikou. On the other hand, VHF radars located at Sanya (18.4°N, 220km away from Haikou) and Fuke (19.5°N, 130km away from Haikou) both recorded strong E region field-aligned irregularity (FAI) echoes altitude-extended structure covering altitudes of 100–140km, which are well correlated with the overturning-like structure of the thermospheric sodium layer. The good agreement between occurrence time of sodium layer (and FAI) structure and of complex Es could indicate a close correlation between them. One possibility is that the chemical reaction in the course of the complex Es (with altitude-deformed structure) could produce sufficient sodium atoms and thus lead to the formation of sodium layer upwelling structure. Correspondingly, FAI altitude-extended structure could be generated through the gradient drift instability in the altitude-extend (deformed) Es which provide plasma density gradients to support the instability development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.