Abstract
A novel time calibration method for waveform sampling application specific integrated circuits (ASICs) based on switched capacitor arrays (SCAs) is proposed in this paper. Precision timing extraction using SCA ASICs has been proved to be a promising technique in many high energy physics experiments. However, such ASICs suffer from irregular sampling intervals caused by process variations. Therefore, careful calibration is required to improve the time resolution of such systems. We evaluated the limitation of a popular method using the proportionality between voltage amplitude and sampling interval of adjacent switched-capacitor cells responding to either a sawtooth wave or a sine wave. The new time calibration method presented here utilizes the relationship between sampling intervals and the known input signal period to establish overdetermined linear equations, and the roots of these equations correspond to the actual sampling intervals. We applied this new method to a pulse timing test with an ASIC designed by our team, and the test results indicate that the new time calibration method is effective.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have