Abstract

Bone transport is a surgery-driven procedure for the treatment of large bone defects. However, challenging complications include prolonged consolidation, docking site nonunion and pin tract infection. Here, we develop an osteoinductive and biodegradable intramedullary implant by a hybrid tissue engineering construct technique to enable sustained delivery of bone morphogenetic protein-2 as an adjunctive therapy. In a male rat bone transport model, the eluting bone morphogenetic protein-2 from the implants accelerates bone formation and remodeling, leading to early bony fusion as shown by imaging, mechanical testing, histological analysis, and microarray assays. Moreover, no pin tract infection but tight osseointegration are observed. In contrast, conventional treatments show higher proportion of docking site nonunion and pin tract infection. The findings of this study demonstrate that the novel intramedullary implant holds great promise for advancing bone transport techniques by promoting bone regeneration and reducing complications in the treatment of bone defects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.