Abstract

We present a rate-independent model for isotropic elastic–orthotropic plastic material behaviour in a hyper-elasto-plastic setting at finite strains, which is based on a covariant formulation that includes plastic-deformation-induced evolution of orthotropy. The model relies on a treatment by Lu and Papadopoulos, who made use of the postulate of covariance for an anisotropic elasto-plastic solid and derived constitutive equations of evolving anisotropies at finite strains. The latter is tantamount to the notion of plastic spin. This treatment does not rely on a multiplicative decomposition of the deformation gradient. We test our model on in-plane sheet-metal forming processes, which are governed by the evolution of pre-existing preferred material orientations. Hence, we advocate an orthotropic yield criterion directed by evolving structural tensors to describe this material behaviour. Our formulation yields two key findings. Firstly, the covariant formulation of plasticity yields suitable evolution equations for the structural tensors characterising the symmetry group of the orthotropic yield function. Secondly, the constitutive equations for the plastic variables and the structural tensors, which are both symmetric second-order tensors, give results that are in good agreement with experimental and numerical findings from in-plane sheet forming processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.