Abstract

A rate-independent model for isotropic elastic–orthotropic plastic material behaviour including the plastic spin is presented in this paper. The plastic spin, as introduced by Dafalias, is the spin of the continuum relative to the material substructure. The model is based on a specific multiplicative decomposition of the deformation gradient tensor, which introduces a uniquely defined intermediate configuration as motivated by Casey. We focus our attention on metal sheets in forming processes, in which pre-existing preferred orientations govern the orthotropic plastic behaviour. As a result, we advocate a Hill-type yield criterion enriched by the notion of plastic spin to describe this material behaviour. Our formulation yields three key findings: firstly, the uniquely defined intermediate configuration, namely a plastically stretched intermediate configuration, allows for a neat implementation of the plastic spin; secondly, the algorithmic formulation is straightforward and shows no additional difficulties in the implementation; and thirdly, a good agreement of our numerical model with experimental and numerical results from in-plane sheet forming processes reported in the literature is achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.