Abstract

ABSTRACT An orientation study around the NICO Co-Au-Bi deposit in the Great Bear magmatic zone of NW Territories, Canada, was initiated in 2007 to establish a practical guide to geochemical and mineralogical exploration for iron oxide copper-gold deposits in glaciated terrain. Bedrock and till samples were collected up-ice, proximal and down-ice from mineralization and host rocks, to characterize their indicator mineral signatures. Results demonstrate that gold grain abundance, size and shape, as well as magnetite and hematite composition, have the best potential to fingerprint the mineralization at NICO. Pristine-shaped gold grains indicative of a local bedrock source and a short distance of glacial transport are relatively abundant in till samples collected immediately down-ice from several mineral occurrences at NICO and none were recovered up-ice. Iron oxide composition using preliminary discriminant diagrams shows some potential, using Ni/(Mn+Cr) versus Ti+V plots. In particular, magnetite and hematite from till samples collected over, or directly down-ice of, the NICO deposit have lower Ti+V compositions compared to magnetite and hematite from till collected up-ice from mineralization. Potential non-ferromagnetic indicator minerals are either not chemically stable in surface sediments (arsenopyrite, chalcopyrite, pyrite), not sufficiently coarse-grained or resistant to glacial transport (bismuthinite, tourmaline, ferroactinolite), not abundant enough in the mineralized bedrock (scheelite, molybdenite, cobaltite, allanite), or not sufficiently heavy (tourmaline) to be useful at NICO but may be at other deposits in the region or elsewhere in glaciated terrain. The development of indicator mineral methods, together with till geochemistry, will be tested with further sampling over the Great Bear magmatic zone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.