Abstract

Three major complications often occur after osteosarcoma resection: large bone defects, infectious wounds, and tumor recurrence. In addition to conventional internal fixation and auto- or allografts, multifunctional supportive treatments are needed for limb reconstruction after tumor removal. With inspiration from the "organic-inorganic" hybrid concept, we developed a freestanding polyelectrolyte membrane (PEM) using a layer-by-layer (LBL) deposition of quaternized chitosan (QCS) and hyaluronic acid (HA), and with copper-doped laponite (CuLAP) intercalation. The CuLAP demonstrated photothermal conversion capabilities under near-infrared (NIR) light irradiation, and displayed glutathione (GSH)-depleted Fenton-like catalytic activity. The further engineered PEM possesses a "brick and mortar" structure with enhanced surface roughness and stiffness. The fusion of CuLAP-mediated GSH-depleted chemodynamic treatment (CDT) and moderate photothermal therapy (PTT) facilitated tumor ablation and bactericidal effects. Moreover, the continuous release of copper ions and silicates aided angiogenesis and osteogenesis, supporting the regeneration of both soft (skin) and hard (bone) tissues. This all-in-one platform offers a promising clinical tool for assisting tissue reconstruction after osteosarcoma resection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.