Abstract

A linear algebraic theory called the ‘multiple Arnoldi method’ is presented and realizes large-scale (order-N) electronic structure calculations with generalized eigenvalue equations. A set of linear equations, in the form of (zS − H)x = b, are solved simultaneously with multiple Krylov subspaces. The method is implemented in a simulation package ELSES (www.elses.jp) with tight-binding-form Hamiltonians. A finite-temperature molecular dynamics simulation is carried out for metallic and insulating materials. A calculation with 107 atoms was realized by a workstation. The parallel efficiency is shown up to 1024 CPU cores.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.