Abstract

Let N be a connected and simply connected nilpotent Lie group, and let K be a subgroup of the automorphism group of N. We say that the pair (K, N) is a nilpotent Gelfand pair if \( {L}_K^1(N) \) is an abelian algebra under convolution. In this document we establish a geometric model for the Gelfand spectra of nilpotent Gelfand pairs (K, N) where the K-orbits in the center of N have a one-parameter cross section and satisfy a certain non-degeneracy condition. More specifically, we show that the one-to-one correspondence between the set Δ(K, N) of bounded K-spherical functions on N and the set \( \mathcal{A} \)(K, N) of K-orbits in the dual 𝔫* of the Lie algebra for N established in [BR08] is a homeomorphism for this class of nilpotent Gelfand pairs. This result had previously been shown for N a free group and N a Heisenberg group, and was conjectured to hold for all nilpotent Gelfand pairs in [BR08].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.