Abstract
An adnexal mass, also known as a pelvic mass, is a growth that develops in or near the uterus, ovaries, fallopian tubes, and supporting tissues. For women suspected of having ovarian cancer, timely and accurate detection of a malignant pelvic mass is crucial for effective triage, referral, and follow-up therapy. While various deep learning techniques have been proposed for identifying pelvic masses, current methods are often not accurate enough and can be computationally intensive. To address these issues, this manuscript introduces an optimized Siamese circle-inspired neural network with deep linear graph attention (SCINN-DLGN) model designed for pelvic mass classification. The SCINN-DLGN model is intended to classify pelvic masses into three categories: benign, malignant, and healthy. Initially, real-time MRI pelvic mass images undergo pre-processing using semantic-aware structure-preserving median morpho-filtering to enhance image quality. Following this, the region of interest (ROI) within the pelvic mass images is segmented using an EfficientNet-based U-Net framework, which reduces noise and improves the accuracy of segmentation. The segmented images are then analysed using the SCINN-DLGN model, which extracts geometric features from the ROI. These features are classified into benign, malignant, or healthy categories using a deep clustering algorithm integrated into the linear graph attention model. The proposed system is implemented on a Python platform, and its performance is evaluated using real-time MRI pelvic mass datasets. The SCINN-DLGN model achieves an impressive 99.9% accuracy and 99.8% recall, demonstrating superior efficiency compared to existing methods and highlighting its potential for further advancement in the field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.