Abstract

MicroRNAs (miRNAs) have emerged as biomarkers for the diagnosis and prognosis of various diseases, such as cancer. Recent advancements in CRISPR/Cas12a-based biosensors in combination with hybridization chain reaction (HCR) make it a promising approach for miRNA detection. To increase the compatibility of HCR and CRISPR/Cas12a, we compared two design strategies of hairpin DNA in HCR. The results showed that different arrangements of the protospacer sequence and protospacer adjacent motif (PAM) in the hairpin DNA could affect the sensing performance. The “PAM Formation” strategy, by which the duplex PAM sites are absent in the hairpin DNA and present in the long duplex DNA after HCR, exhibited advantages in detection sensitivity. By optimizing the probe sequences and reaction conditions, we developed a miRNA detection platform. With the same crRNA, this platform enables the identification of different miRNAs by simply replacing the loop region of the target recognition probe. In addition, the proposed platform can detect single-stranded DNA and distinguishing single or multiple base mutations in the target strand. The application of discriminating the target miRNA expression levels from different cell lines validated the reliability and practicability of the sensor platform, indicating its potential applications in early clinical accurate diagnosis of cancers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call