Abstract

In recent years, with the rapid development of blockchain technology, the issues of storage load and data security have attracted increasing attention. Due to the immutable nature of data on the blockchain, where data can only be added and not deleted, there is a significant increase in storage pressure on blockchain nodes. In order to alleviate this burden, this paper proposes a blockchain data storage strategy based on a hot and cold block mechanism. It employs a block heat evaluation algorithm to assess the historical and correlation-based heat indicators of blocks, enabling the identification of frequently accessed block data for storage within the blockchain nodes. Conversely, less frequently accessed or "cold" block data are offloaded to cloud storage systems. This approach effectively reduces the overall storage pressure on blockchain nodes. Furthermore, in applications such as healthcare and government services that utilize blockchain technology, it is essential to encrypt stored data to safeguard personal privacy and enforce access control measures. To address this need, we introduce a blockchain data encryption storage mechanism based on threshold secret sharing. Leveraging threshold secret sharing technology, the encryption key for blockchain data is fragmented into multiple segments and distributed across network nodes. These encrypted key segments are further secured through additional encryption using public keys before being stored. This method serves to significantly increase attackers' costs associated with accessing blockchain data. Additionally, our proposed encryption scheme ensures that each block has an associated encryption key that is stored alongside its corresponding block data. This design effectively mitigates vulnerabilities such as weak password attacks. Experimental results demonstrate that our approach achieves efficient encrypted storage of data while concurrently reducing the storage pressure experienced by blockchain nodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.