Abstract
In this work, an artificial neural network (ANN)-based model is proposed to describe the input–output relationships in a Limaçon-To-Circular (L2C) gas expander with an inlet valve. The L2C gas expander is a type of energy converter that has great potential to be used in organic Rankine cycle (ORC)-based small-scale power plants. The proposed model predicts the different performance indices of a limaçon gas expander for different input pressures, rotor velocities, and valve cutoff angles. A network model is constructed and optimized for different model parameters to achieve the best prediction performance compared to the classic mathematical model of the system. An overall normalized mean square error of 0.0014, coefficient of determination (R2) of 0.98, and mean average error of 0.0114 are reported. This implies that the surrogate model can effectively mimic the actual model with high precision. The model performance is also compared to a linear interpolation (LI) method. It is found that the proposed ANN model predictions are about 96.53% accurate for a given error threshold, compared to about 91.46% accuracy of the LI method. Thus the proposed model can effectively predict different output parameters of a limaçon gas expander such as energy, filling factor, isentropic efficiency, and mass flow for different operating conditions. Of note, the model is only trained by a set of input and target values; thus, the performance of the model is not affected by the internal complex mathematical models of the overall valved-expander system. This neural network-based approach is highly suitable for optimization, as the alternative iterative analysis of the complex analytical model is time-consuming and requires higher computational resources. A similar modeling approach with some modifications could also be utilized to design controllers for these types of systems that are difficult to model mathematically.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have