Abstract

In this paper, a numerical optimization study of single-groove casing treatment was conducted on a high-speed axial compressor. One of the aims is to find the optimal structure of a single groove that can improve compressor stability with minimal loss in efficiency. Another aim is to explore suitable parameters for rapidly evaluating the compressor stall margin. A design optimization platform has been constructed in this paper, which utilizes NSGA-II and a Radial Basis Function (RBF) neural net model to carry out the optimization. The stall margin of the compressor with A single groove was accurately determined by calculating its entire overall performance line. A Pareto front is obtained through optimization, and the optimal design can be selected from the Pareto front. By considering both stall margin and efficiency loss, one of the optimal designs was found to achieve a 7.49% improvement in stall margin with a 0.24% improvement in peak efficiency. Based on the database, the effect of design parameters of a single groove on compressor stability and performance is analyzed. A series of evaluation parameters of stall margin were compared to their degree of correlation with the real stall margin calculated by the entire overall performance line. As a result, tip blockage and momentum ratio can be used as efficient parameters for quickly evaluating the compressor stall margin without the need to calculate the entire performance curve of the compressor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.