Abstract
AbstractIn this manuscript, a borate ester solution, as a precursor, is prepared by combining polyvinyl alcohol (PVA) and boric acid (BA). The precursor is then electrospun to form nanofibers. However, the addition of BA has a negative effect on the spinning behavior by changing the conductivity. The solution's quality is enhanced through use of additives such as glycerol, sodium chloride, and acetic acid. The effect of additives on the viscosity and conductivity of solutions, and their spinning behavior, is investigated. By adjusting electrospinning process variables and solution properties, nanofibers are produced. Fourier transform infrared (FT‐IR) analysis is performed to identify the formation of borate ester as a result of the reaction between PVA and BA. Thermal analysis is used to characterize the thermal stability of the fibers. Scanning electron microscopy (SEM) is used to examine the fiber morphology and diameter distribution. The findings are used to determine the best viscosity–conductivity windows for the production of electrospun borate ester nanofibers. Finally, the ability of optimized nanofibers to capture neutrons is evaluated using an Am‐Be neutron source and a BF3 detector set up. The results of the measurements indicate that the incorporation of BA into PVA nanofibers can enhance their neutron shielding capabilities up to 7.3%.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.