Abstract

The casualties and financial losses caused by large earthquakes have led to an awareness of prediction importance of such earthquakes. The earthquake prediction is divided into four categories: long term, intermediate term, short term, and immediate. The M8 algorithm is one of the intermediate-term middle-range prediction algorithms primarily used to predict earthquake of magnitude 8 or more and is applied later for smaller magnitudes. The Iranian Plateau is less exposed to earthquake with magnitude 8 or more and it is observed that the seismicity rate in this region is generally low. Thus; the original M8 is not suitable for applying in this region. The objective of this study is to modify the M8 algorithm for Prediction of Major M7.0+ Earthquakes in the Iranian Plateau. The major earthquake of magnitude 7 or more in the Iranian plateau from 1975 to 2018 is considered as the target earthquakes. The hit rate times 1 minus alarm rate is defined as objective function and the particles swarm optimization meta-heuristic algorithm is used to maximize it. The optimum M8 could predict 14 out of 17 large earthquakes in the Iranian plateau while occupying 31.7% of the spatio-temporal space as the alarm. The results show that by employing an optimization algorithm, we can modify the M8 algorithm for efficient prediction of the target magnitudes less than 8 in the regions with low seismicity rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call