Abstract
5G network nodes, fronthaul and backhaul alike, will have both forwarding and computational capabilities. This makes energy-efficient network management more challenging, as decisions, such as activating or deactivating a node, impact on both the ability of the network to route traffic and the amount of processing it can perform. To this end, we formulate an optimization problem accounting for the main features of 5G nodes and the traffic they serve, allowing joint decisions about: 1) the nodes to activate; 2) the network functions they run; and 3) the traffic routing. Our optimization module is integrated within the management and orchestration framework of 5G, thus enabling swift and high-quality decisions. We test our scheme with both a real-world testbed based on OpenStack and OpenDaylight, and a large-scale emulated network whose topology and traffic come from a real-world mobile operator, finding it to consistently outperform state-of-the art alternatives and closely match the optimum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.