Abstract

An islanding operation of distributed generations (DGs) in emergencies due to a fault in distribution systems can be a means of power supply for important loads in outage areas by facilitating the self-sufficient capability of DGs forming microgrids. This paper presents an optimization-based intentional islanding scheme to derive a near-optimal service restoration (SR) plan. The anti-parallel operation of DGs is considered a new constraint that avoids more than two DGs in an island thereby, enabling simpler control and operation of the distribution system in an emergency. Each island is created by an island partitioning scheme based on the tree representation of the network and fast searching scheme for the tree structure considering load importance, and a genetic algorithm (GA) is utilized to explore possible SR solutions. Case studies on IEEE 69-bus distribution system according to various fault locations are conducted, and the simulation results show that the proposed scheme can restore more loads with higher priority in outage areas by the intentional islanding of DGs. Furthermore, the time for deriving the optimal solution can be reduced since the evaluations for infeasible solutions are not performed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.