Abstract

In this paper, we present the performance of twin precision technique in reduced computation modified booth (RCMB) multiplier to achieve double throughput, and an algorithm is proposed. Twin precision technique is the efficient way to obtain double throughput in the multipliers. We describe how to apply twin precision technique to RCMB multipliers. Implementation of twin precision in RCMB multiplier requires lesser changes to be made in partial product array for obtaining double throughput. Multiplexers usually do the signal selection for N and N/2 bit multiplication. In RCMB multiplier, [N/2] + 1 partial product are reduced to N/2 rows. Our idea of implementing twin precision technique to RCMB results in less utilisation of multiplexers of about [N/2] + 3 which gave a way for optimization in the twin precision (TP) multiplier. Thereby, we have achieved the drastic reduction in multiplexer utilisation of about 40% to 50% (for N = 8 to 128) compared to the existing twin precision modified booth multiplier. In our proposed optimised TP modified booth multiplier this reduction in multiplexers gave a way for overall reduction in area, power and delay. Lesser utilisation of multiplexer results in the area reduction of about 5% to 18%, delay of 5% to 20% and a considerable reduction in power of 8% to 32% were noticed in the proposed TP booth multiplier for N = 8 to 128. Our proposed optimised TP multiplier is implemented in FFT complex multiplication which is taken as an application case study and achieves better performance (area, delay and power) compare to prior TP multiplier. All our evaluation are made using cadence RTL compiler using TSMC 180 nm library.

Highlights

  • Multiplication is an influential arithmetic operation in processor and digital signal-processing application, and it plays a foremost role in digital computation

  • 5 Results and discussion In this paper, we have implemented Twin precision (TP) technique in reduced computation modified booth (RCMB) and a suitable algorithm is proposed for obtaining double throughput, which is applicable for all bit width that are multiples of eight

  • Less multiplexers are utilised because when TP implementation is made in RCMB according to our proposed algorithm, lesser changes are to be made in partial product array for N/2 bit multiplication

Read more

Summary

Introduction

Multiplication is an influential arithmetic operation in processor and digital signal-processing application, and it plays a foremost role in digital computation. The changes or steps to be performed for N/2 (LSB and MSB) bit multiplication in N bit architecture are inversion of MSB in each partial product row which has to be made for twos complement method, addition of 1 s for sign extension prevention, generation of negk In prior work of implementing twin precision technique [2] to obtain double throughput, more changes (steps) are to be performed in partial product array than proposed implementation of TP in RCMB.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.