Abstract

A general optimisation framework based on a spatially-explicit multiperiod mixed integer linear programming (MILP) model is proposed to address the strategic design of BioSNG supply chains. The framework considers procurement of feedstocks, plantation of energy crops, and different modes for transportation of feedstocks and final products. The mathematical framework allows researches and policy makers to investigate scenarios that promote the development of BioSNG supply chains in a regional and/or national context. The capabilities of the proposed model are illustrated through the implementation of a set of case studies based on the UK. The results revealed that domestic resources in the UK can supply up to 21.4% of the total gas demand projected by the UK National Grid in the scenario “Slow progression” for a planning horizon of 20years. However, despite the considerable potential for production of BioSNG, the role of the government through subsidisation schemes such as feed-in tariff and Renewable Obligation Certificates (ROCs) is crucial in order to make the development of these resources economically attractive for private sectors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.