Abstract

We prove that the integrated density of states (IDS) of random Schrödinger operators with Anderson-type potentials on L2(Rd) for d≥1 is locally Hölder continuous at all energies with the same Hölder exponent 0<α≤1 as the conditional probability measure for the single-site random variable. As a special case, we prove that if the probability distribution is absolutely continuous with respect to Lebesgue measure with a bounded density, then the IDS is Lipschitz continuous at all energies. The single-site potential u∈L0∞(Rd) must be nonnegative and compactly supported. The unperturbed Hamiltonian must be periodic and satisfy a unique continuation principle (UCP). We also prove analogous continuity results for the IDS of random Anderson-type perturbations of the Landau Hamiltonian in two dimensions. All of these results follow from a new Wegner estimate for local random Hamiltonians with rather general probability measures

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.