Abstract
The bovine abortion surveillance system in France aims to detect as early as possible any resurgence of bovine brucellosis, a disease of which the country has been declared free since 2005. It relies on the mandatory notification and testing of each aborting cow, but under-reporting is high. This research uses a new and simple approach which considers the calving interval (CI) as a “diagnostic test” to determine optimal cut-off point c and estimate diagnostic performance of the CI to identify aborting cows, and herds with multiple abortions (i.e. three or more aborting cows per calving season). The period between two artificial inseminations (AI) was considered as a “gold standard”. During the 2006–2010 calving seasons, the mean optimal CI cut-off point for identifying aborting cows was 691 days for dairy cows and 703 days for beef cows. Depending on the calving season, production type and scale at which c was computed (individual or herd), the average sensitivity of the CI varied from 42.6% to 64.4%; its average specificity from 96.7% to 99.7%; its average positive predictive value from 27.6% to 65.4%; and its average negative predictive value from 98.7% to 99.8%. When applied to the French bovine population as a whole, this indicator identified 2–3% of cows suspected to have aborted, and 10–15% of herds suspected of multiple abortions. The optimal cut-off point and CI performance were consistent over calving seasons. By applying an optimal CI cut-off point to the cattle demographics database, it becomes possible to identify herds with multiple abortions, carry out retrospective investigations to find the cause of these abortions and monitor a posteriori compliance of farmers with their obligation to report abortions for brucellosis surveillance needs. Therefore, the CI could be used as an indicator of abortions to help improve the current mandatory notification surveillance system.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have