Abstract

A two-dimensional diffusion process is controlled until it enters a given subset of $ \mathbb{R}^2 $. The aim is to find the control that minimizes the expected value of a cost function in which there are no control costs. The optimal control can be expressed in terms of the value function, which gives the smallest value that the expected cost can take. To obtain the value function, one can make use of dynamic programming to find the differential equation it satisfies. This differential equation is a non-linear second-order partial differential equation. We find explicit solutions to this non-linear equation, subject to the appropriate boundary conditions, in important particular cases. The method of similarity solutions is used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.