Abstract

A Hermite based block method (HBBM) is proposed for the numerical solution of second-order non-linear elliptic partial differential equations (PDEs). The development of the method was accomplished through the methodology of interpolation and collocation procedures. The method’s analysis reveals that it satisfied the requirements for a numerical technique to be convergent. The implementation of the method is extensively discussed. Five numerical examples originating from physical phenomena are presented, and the applicability and accuracy of the HBBM are established by comparing them with the existing methods; the haar wavelet collocation method, the modified cubic B-spline collocation method, and the modified decomposition method. The proposed methods of HBBM are more accurate, stable, and convergent

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.