Abstract

This paper gives an optimal O(n log n+nk) time algorithm for constructing the levels 1,…, k in an arrangement of n lines in the plane. This algorithm is extended to compute these levels in an arrangement of n unbounded x-monotone polygonal convex chains, of which each pair intersects at most a constant number of times. We then show how these results can be used to solve several geometric optimization problems including the weak separation problem for sets of red and blue points or polygons, the maximum line transversal problem for sets of line segments, the densest hemisphere problem for sets of points on a sphere and the optimal corridor problem for sets of points in the plane. All of the algorithms are quality-sensitive; they run faster if the optimal solution is a good one.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.