Abstract

An implementation of the recently proposed semi-monotonic augmented Lagrangian algorithm for solving the large convex bound and equality constrained quadratic programming problems is considered. It is proved that if the algorithm is applied to the class of problems with uniformly bounded spectrum of the Hessian matrix, then the algorithm finds an approximate solution at O(1) matrix-vector multiplications. The optimality results are presented that do not depend on conditioning of the matrix which defines the equality constraints. Theory covers also the problems with dependent constraints. Theoretical results are illustrated by numerical experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.