Abstract
A variant of the augmented Lagrangian-type algorithm for strictly convex quadratic programming problems with bounds and equality constraints is considered. The algorithm exploits the adaptive precision control in the solution of auxiliary bound constraint problems in the inner loop while the Lagrange multipliers for the equality constraints are updated in the outer loop. The update rule for the penalty parameter is introduced that depends on the increase of the augmented Lagrangian. Global convergence is proved and an explicit bound on the penalty parameter is given. A qualitatively new feature of our algorithm is a bound on the feasibility error that is independent of conditioning of the constraints. When applied to the class of problems with the spectrum of the Hessian matrix in a given interval, the algorithm returns the solution in O(1) matrix-vector multiplications. The results are valid even for linearly dependent constraints. Theoretical results are illustrated by numerical experiments including the solution of an elliptic variational inequality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.