Abstract

An operator splitting method is proposed for the Degasperis–Procesi (DP) equation, by which the DP equation is decomposed into the Burgers equation and the Benjamin–Bona–Mahony (BBM) equation. Then, a second-order TVD scheme is applied for the Burgers equation, and a linearized implicit finite difference method is used for the BBM equation. Furthermore, the Strang splitting approach is used to construct the solution in one time step. The numerical solutions of the DP equation agree with exact solutions, e.g. the multipeakon solutions very well. The proposed method also captures the formation and propagation of shockpeakon solutions, and reveals wave breaking phenomena with good accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.