Abstract

We present an open volume, high isolation, RF system suitable for pulsed NMR and EPR spectrometers with reduced dead time. It comprises a set of three RF surface coils disposed with mutually parallel RF fields and a double-channel receiver (RX). Theoretical and experimental results obtained with a prototype operating at about 100 MHz are reported. Each surface RF coil (diameter 5.5 cm) was tuned to f 0 = 100.00 ± 0.01 MHz when isolated. Because of the mutual coupling and the geometry of the RF coils, only two resonances at f 1 = 97.94 MHz and f 2 = 101.85 MHz were observed. We show they are associated with two different RF field spatial distributions. In continuous mode (CW) operation the isolation between the TX coil and one of the RX coils (single-channel) was about −10 dB. By setting the double-channel RF assembly in subtraction mode the isolation values at f 1 or f 2 could be optimised to about −75 dB. Following a TX RF pulse (5 μs duration) an exponential decay with time constant of about 600 ns was observed. The isolation with single-channel RX coil was about −11 dB and it increased to about −47 dB with the double-channel RX in subtraction mode. Similar results were obtained with the RF pulse frequency selected to f 2 and also with shorter (500 ns) RF pulses. The above geometrical parameters and operating frequency of the RF assembly were selected as a model for potential applications in solid state NMR and in free radical EPR spectroscopy and imaging.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.