Abstract

Three-phase motors find extensive applications in various industries. Open-circuit faults are a common occurrence in inverters, and the open-circuit fault diagnosis system plays a crucial role in identifying and addressing these faults to enhance the safety of motor operations. Nevertheless, the current open-circuit fault diagnosis system faces challenges in precisely detecting specific faulty switches. The proposed work presents a neural network-based open-circuit fault diagnosis system for identifying faulty power switches in inverter-driven motor systems. The system leverages trained phase-to-phase voltage data from the motor to recognize the type and location of faults in each phase with high accuracy. Employing separate neural networks for each of the three phases in a three-phase permanent magnet synchronous motor, the system achieves an outstanding overall fault detection accuracy of approximately 99.8%, with CNN and CNN-LSTM architectures demonstrating superior performance. This work makes two key contributions: (1) implementing neural networks to significantly improve the accuracy of locating faulty switches in open-circuit fault scenarios, and (2) identifying the optimal neural network architecture for effective fault diagnosis within the proposed system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call