Abstract

Aiming at the open circuit fault of a dual three-phase permanent magnet synchronous motor, a normalized current method is used for open circuit fault diagnosis. Then, a fault-tolerant control strategy for reducing the harmonic distortion of a dual three-phase permanent magnet synchronous motor is proposed, which is based on current model prediction control and keeps the decoupling transformation matrix unchanged. The fault-tolerant control method based on current model prediction considers the influence of the control quantity on the future state of the system, and effectively reduces the total harmonic distortion. Two fault-tolerant control strategies for the motor are analyzed, with minimizing stator copper consumption and maximizing torque output as control objectives. Through simulation and experiment of fault-tolerant control strategies for a dual three-phase permanent magnet synchronous motor, the results verify the effectiveness and feasibility of the strategy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call