Abstract

Building Information Modeling (BIM) and Internet of Things (IoT) are two emergent technologies that promise substantial improvements in the lifecycle management of facilities. Recently, research on BIM-centered IoT applications has been gaining an increasing momentum. Currently, there exist some major challenges that impede the realization of the synergistic potentials of BIM and IoT. Among them is to maintain an effective semantic interoperability between the BIM and IoT data ecosystems. Indeed, an accurate integration between IoT-enabled raw sensory data and existing BIM-based digital models of facilities requires a profound understanding of contextual clues (time, location, occupants’ profiles, etc.), which are embedded within actual observations derived from IoT sensors. In this paper, a framework is presented for integrating disparate sources of BIM and IoT data through an ontology-based mediation mechanism. This framework enables an integrated access to local sources of BIM and IoT data thorough query-rewriting processes. In order to demonstrate the applicability of the proposed framework, query rewriting examples have been provided in the context of indoor comfort analysis for facility occupants. In the case demonstrations, the geospatial data acts as the main clue for the derivation of semantic dependencies between local instances of BIM and IoT data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call