Abstract
The Cox model-which remains the first choice for analyzing time-to-event data, even for large data sets-relies on the proportional hazards (PH) assumption. When survival data arrive sequentially in chunks, a fast and minimally storage intensive approach to test the PH assumption is desirable. We propose an online updating approach that updates the standard test statistic as each new block of data becomes available and greatly lightens the computational burden. Under the null hypothesis of PH, the proposed statistic is shown to have the same asymptotic distribution as the standard version computed on an entire data stream with the data blocks pooled into one data set. In simulation studies, the test and its variant based on most recent data blocks maintain their sizes when the PH assumption holds and have substantial power to detect different violations of the PH assumption. We also show in simulation that our approach can be used successfully with "big data" that exceed a single computer's computational resources. The approach is illustrated with the survival analysis of patients with lymphoma cancer from the Surveillance, Epidemiology, and End Results Program. The proposed test promptly identified deviation from the PH assumption, which was not captured by the test based on the entire data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.