Abstract
In order to improve the working efficiency of the photovoltaic (PV) array inspection system, the application of online monitoring systems for the PV arrays is quickly rising. In this paper, an online PV array monitoring combining with B/S architecture, Python language, and Flask framework is developed to monitor and diagnose the status of PV arrays which can display the data of the PV array and facilitate the staff to monitor the working status of PV array. When a fault occurs, the staff can also register the fault information on the website quickly. The developed system is composed of three parts: data acquisition, data transmission and PV online monitoring website. Firstly, the system uses the Raspberry Pi3 to collect the data when the PV array operates in maximum power point (MPP), and the acquired data is stored locally in the Raspberry Pi. And then, the data is uploaded to the PC side via the FileZilla server software and further transmitted to online monitoring website. Finally, the PV array online monitoring website displays received data, and perform the fault diagnosis of PV array using a kernel based Extreme Learning Machine (KELM). Experimental results show that the total classification accuracy for ten different operating conditions can reach 97.2%.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have