Abstract
Accurate and fast estimation of the state of charge is important for the battery management system of electric vehicles. This paper proposes a method to estimate the state of charge of Lithium-ion batteries by the <span lang="EN-US">variable</span> forgetting factor recursive least square (VFFRLS) – unscented Kalman filter (UKF) algorithm in real-time without the off-line battery testing data. Since the state observation requires an accurate model, an equivalent circuit model was constructed. Then, the VFFRLS algorithm is used to identify online the battery model parameters based on voltage and current measurements. An advantage of this algorithm is that it requires less initial information and shorter identification time than offline parameter identification. After the model parameters are well identified, the unscented Kalman filter estimates the state of charge and minimizes noise characteristics and uncertainty in the parameter identification process. The VFFRLS algorithm applied in this paper has shown a good result with the model output error of less than 1%, and the identification achieves real-time response. The state of charge obtained by the UKF algorithm has shown satisfactory estimation results with fast convergence speed and small errors. The UKF filter provides the results with a 1.5% error from the reference and converges after 10 cycles.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Electrical and Computer Engineering (IJECE)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.